CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) Contributes to Floral Repression under Non-Inductive Short Days in Arabidopsis
نویسندگان
چکیده
In Arabidopsis, CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) genes act in repression of photomorphogenesis in darkness, and recent reports revealed that some of these genes, such as COP1 and DET1, also have important roles in controlling flowering time and circadian rhythm. The COP/DET/FUS protein COP10 interacts with DET1 and DNA DAMAGE-BINDING PROTEIN 1 (DDB1) to form a CDD complex and represses photomorphogenesis in darkness. The cop10-4 mutants flower normally in inductive long days (LD) but early in non-inductive short days (SD) compared with wild type (WT); however, the role of COP10 remains unknown. Here, we investigate the role of COP10 in SD-dependent floral repression. Reverse transcription-quantitative PCR revealed that in SD, expression of the LD-dependent floral inducers GI, FKF1, and FT significantly increased in cop10-4 mutants, compared with WT. This suggests that COP10 mainly regulates FT expression in a CO-independent manner. We also show that COP10 interacts with GI in vitro and in vivo, suggesting that COP10 could also affect GI function at the posttranslational level. Moreover, FLC expression was repressed drastically in cop10-4 mutants and COP10 interacts with MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE (MSI4/FVE), which epigenetically inhibits FLC expression. These data suggest that COP10 contributes to delaying flowering in the photoperiod and autonomous pathways by downregulating FT expression under SD.
منابع مشابه
Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness.
Wild-type Arabidopsis seedlings are capable of following two developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. Screening of Arabidopsis mutants for constitutive photomorphogenic development in darkness resulted in the identification of three new loci designated COP8, COP10, and COP11. Detailed examination of the temporal morphological and cellular diffe...
متن کاملEffect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologues.
Arabidopsis thaliana COP10 (constitutive photomorphogenic 10) is a UEV [Ub (ubiquitin)-conjugating enzyme (E2) variant protein] that is required for repression of seedling photomorphogenesis in darkness. COP10 forms a complex {the CDD complex [COP10-DET1 (de-etiolated 1)-DDB1 (DNA damage binding protein 1) complex]} with DET1 and DDB1a in vivo and can enhance the activity of Ub-conjugating enzy...
متن کاملSHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures.
Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under i...
متن کاملArabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development.
Repression of photomorphogenesis in Arabidopsis thaliana requires activity of the COP9 signalosome (CSN), CDD, and COP1 complexes, but how these three complexes work in concert to accomplish this important developmental switch has remained unknown. Here, we demonstrate that Arabidopsis CULLIN4 (CUL4) associates with the CDD complex and a common catalytic subunit to form an active E3 ubiquitin l...
متن کاملThe E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress.
The timing of flowering is coordinated by a web of gene regulatory networks that integrates developmental and environmental cues in plants. Light and temperature are two major environmental determinants that regulate flowering time. Although prolonged treatment with low nonfreezing temperatures accelerates flowering by stable repression of FLOWERING LOCUS C (FLC), repeated brief cold treatments...
متن کامل